

COMPUTER PROGRAMMING

Course code IT103

Course title Computer Programming

Type of course Elective

Year of study 2nd

Semester Fall

ECTS 6 credits: 50 contact hours, 112 individual work hours

Coordinating lecturers Oleg Mirzianov

Studies form Full-time

Prerequisites -

Language of instruction English

Annotation

This course is based on the Harvard CS50x course curriculum - introduction to the intellectual enterprises of computer

science and the art of programming. Through the course, students learn how to solve real-life problems in the most efficient

way using algorithms. The course introduces problem-solving, which is inspired by the arts, humanities, social sciences,

and economics especially. No prior knowledge in programming is required. Students are expected to create a personal

final project. The course will examine in depth the programming fundamentals.

Aim of the course

The aim of the course is to learn essential programming skills and get hands-on experience by solving real-life problems.
The course aims the need for leaders to understand the principles of IT products’ development for effective decision
making.

Course Learning Outcomes (CLO) Study Methods Assessment Methods

CLO1. To be able to process information and
operate at multiple levels of abstraction;

Lecture, consultation, problem solving,
homework, discussion. self-study

Coursework, midterm, final
exam, final project.

CLO2. To be able to decompose IT problems
into parts and solve them efficiently;

Lecture, consultation, problem solving,
homework, discussion.

Coursework, midterm, final
exam, final project.

CLO3. To be able to demonstrate proficiency
in a software development environment;

Lecture, consultation, problem solving,
homework, discussion.

Coursework, final exam, final
project.

CLO4. To be able to assess the correctness,
design, and style of code;

Lecture, consultation, problem solving,
homework, discussion.

Coursework, midterm, final
exam, final project.

CLO5. To be able to evaluate the project’s
complexity and estimate required resources.

Lecture, consultation, problem solving,
homework, discussion.

Final project, coursework.

Quality Management

The quality of the course is assured by the various teaching-learning methods along with a comfortable infrastructure:

● Learning material is being facilitated in a manner, that no prior programming experience is required.
● All course material is available online (including theory in a video format) through ISM e-learning platform,

therefore student’s learning is personalized.
● Peer-to-peer consultation with each learner is being constantly carrying out during the lectures, to ensure that

students have all the support to go further.
● Collaboration among students is encouraged and facilitated to form a community where they can feel comfortable

to receive help or feedback.
● All tools for the learning process are web-based and can be accessed through ISM e-platform, therefore no

software purchasing/installation is required and learning can occur on any laptop or PC.
● Assessment of the problems sets’ correctness and style of the code is automated, therefore students can

immediately improve their code or move forward.

Academic honesty

The course’s philosophy on academic honesty is best stated as “be reasonable.” The course recognizes that interactions
with classmates and others can facilitate mastery of the course’s material. However, there remains a line between enlisting
the help of another and submitting the work of another. This policy characterizes both sides of that line.

The essence of all work that you submit to this course must be your own. Collaboration on problem sets is not permitted
except to the extent that you may ask classmates and others for help so long as that help does not reduce to another doing
your work for you. Generally speaking, when asking for help, you may show your code to others, but you may not view
theirs, so long as you and they respect this policy’s other constraints. Collaboration on the course’s final exam and test is
not permitted at all. Collaboration on the course’s final project is permitted to the extent prescribed by its specification.

Reasonable Not reasonable

Communicating with classmates about problem

sets’ problems in English (or some other

spoken language), and properly citing those

discussions.

Discussing the course’s material with others in
order to understand it better.

Helping a classmate identify a bug in their code
at lectures, elsewhere, or even online, as by
viewing, compiling, or running their code after
you have submitted that portion of the problem
set yourself. Add a citation to your own code of
the help you provided and resubmit.

Incorporating a few lines of code that you find
online or elsewhere into your own code,
provided that those lines are not themselves
solutions to assigned problems and that you
cite the lines’ origins.

Reviewing past semesters’ tests and final exam
and solutions thereto.

Sending or showing code that you’ve written to
someone, possibly a classmate, so that he or
she might help you identify and fix a bug,
provided you properly cite the help.

Turning to the course’s heads for help or
receiving help from the course’s heads during a
final exam or test.

Accessing a solution to some problem prior to (re-)submitting your

own.

Accessing or attempting to access, without permission, an account

not your own.

Asking a classmate to see their solution to a problem set’s problem

before (re-)submitting your own.

Discovering but failing to disclose to the course’s heads bugs in the

course’s software that affect scores.

Decompiling, deobfuscating, or disassembling the staff’s solutions to

problem sets.

Failing to cite (as with comments) the origins of code or techniques

that you discover outside of the course’s own lessons and integrate

into your own work, even while respecting this policy’s other

constraints.

Giving or showing to a classmate a solution to a problem set’s

problem when it is he or she, and not you, who is struggling to solve

it.

Looking at another individual’s work during the final exam or test.

Turning to the web or elsewhere for instruction
beyond the course’s own, for references, and
for solutions to technical difficulties, but not for
outright solutions to problem set’s problems or
your own final project.

Whiteboarding solutions to problem sets with
others using diagrams or pseudocode but not
actual code.

Manipulating or attempting to manipulate scores artificially, as by

exploiting bugs or formulas in the course’s software.

Paying or offering to pay an individual for work that you may submit

as (part of) your own.

Providing or making available solutions to problem sets to individuals

who might take this course in the future.

Searching for or soliciting outright solutions to problem sets online or

elsewhere.

Splitting a problem set’s workload with another individual and

combining your work.

Submitting (after possibly modifying) the work of another individual

beyond the few lines allowed herein.

Submitting the same or similar work to this course that you have

submitted or will submit to another.

Submitting work to this course that you intend to use outside of the

course (e.g., for a job) without prior approval from the course’s heads.

Turning to humans (besides the course’s heads) for help or receiving

help from humans (besides the course’s heads) during the final exam

or midterm.

Viewing another’s the solution to a problem set’s problem and basing

your own solution on it.

Note: subject to ISM code of ethics and other ISM regulations

Course content

Lecture Topics Lecture Seminar Resource

1 Computational
thinking & Scratch

Problem solving
Inputs, Outputs
Representation
Unary, Binary, Decimal
Abstraction
ASCII, Unicode
RGB
Algorithms
Running Time
Pseudocode
Scratch

● Functions, Arguments, Return Values
● Variables
● Boolean Expressions, Conditions
● Loops
● Events
● Threads

2 4 https://cs50.h

arvard.edu/c

ollege/2020/s

pring/weeks/

0/

https://cs50.h

arvard.edu/x/

2020/weeks/

0/

2 Programming
language

Linux
Command-Line Interface
Programming language

4 4 https://cs50.h

arvard.edu/c

● Functions, Arguments, Return Values
● Variables
● Boolean Expressions, Conditions
● Loops

Libraries, Header Files
Text Editors
Terminal Windows
Compiler
Types
Integer Overflow
Floating-Point Imprecision

ollege/2020/s

pring/weeks1

/1/

https://cs50.h

arvard.edu/x/

2020/weeks/

1/

3 Arrays Preprocessing
Compiling
Assembling
Linking
Debugging
Arrays
Strings
Command-Line Arguments
Cryptography

4 4 https://cs50.h

arvard.edu/c

ollege/2020/s

pring/weeks/

2/

https://cs50.h

arvard.edu/x/

2020/weeks/

2/

4 Algorithms Searching
● Linear Search
● Binary Search

Sorting
● Bubble Sort
● Selection Sort
● Insertion Sort
● Merge Sort

Asymptotic Notation
● O
● Ω
● Ɵ

Recursion

4 4 https://cs50.h

arvard.edu/c

ollege/2020/s

pring/weeks/

3/

https://cs50.h

arvard.edu/x/

2020/weeks/

3/

5 Midterm test Covers all the topics, which were presented
before the midterm

2 2 All resources

used before

the test

6 Memory ● Pointers
● Segmentation Faults
● Dynamic Memory Allocation
● Stack
● Heap
● Buffer Overflow
● Data Structures
● File I/O
● Images

4 4 https://cs50.h

arvard.edu/c

ollege/2020/s

pring/weeks/

4/

https://cs50.h

arvard.edu/x/

2020/weeks/

4/

7 Final project part I Product planning
Time management
Consultations

2 2 -

8 Final project part II Product application
Problem solving
Consultations

2 2 -

Assessment Methods

The Final Grade will be calculated as follows:

Type of an assignment Hours Course grade weights (%)

Problems sets (5 assignments) 56 50%

Midterm 16 15%

Final exam 16 15%

Final project 24 20%

Total: 112 100%

Note: active participation during the classes and seminars might contribute max. 1.5 point to the final evaluation.

Problem sets and the final project are evaluated along axes of correctness and style, with correctness ordinarily counting
for 75% of your score and style counting for 25%.

Lateness

Late submissions (of the problem sets and the final project’s milestones) will be penalized at a rate of 0.1% per minute:
● If you submit 10 minutes late, your score will be penalized 1%. Your score will thus be 99% of what it would have

been if submitted on time.
● If you submit 60 minutes late, your score will be penalized 6%. Your score will thus be 94% of what it would have

been if submitted on time.
● If you submit 1,000 minutes (just over 16 hours) late, your score will be penalized 100%. Your score will thus be

effectively zeroed.
Regardless of submitting (problem sets and the final project) on time or 16 hours late, they have to be completed in order
to be eligible for a satisfactory grade.

Midterm
Covers all the material which was presented before the midterm. Midterm form is organized as 2 hours programming task.
This midterm applies open-book rules.

Final exam

Covers all the material which was presented before and after the midterm. Final exam is organized as 2 hours programming
task . This final exam applies open-book rules and is organized during the exam session.

Open-book rules

Students may use any and all non-human resources during the test, but the only humans to whom you may turn for help
or from whom you may receive help are the course’s heads, which means that...

You may You may not

browse and search the Internet (except the solution
to the task),
review books,
review the course’s own materials,
use CS50 IDE or CS50 Sandbox

browse and search the Internet for the solution to the task.
receive or solicit directly or indirectly any help from anyone other
than the course’s heads.

Take care to review the course’s policy on academic honesty in its entirety. Note particularly, but not only, that

 looking at another individual’s work during the test is not reasonable and
 turning to humans (besides the course’s heads) for help or receiving help from humans (besides the course’s

heads) during the test is not reasonable.

Unless otherwise noted, you may call any functions we’ve encountered this term in the code that you write. You needn’t
comment code that you write, but comments may help in cases of partial credit. If having difficulty with code, you may
resort to pseudocode for potential partial credit.

https://cs50.harvard.edu/college/syllabus/#academic-honesty

Among the midterm’s and final exam’s aims is to assess your newfound comfort with the course’s material and your ability
to apply the course’s lessons to familiar and unfamiliar problems. And most problems aspire to teach something new.

Final project

The final project is the final assignment of the course. Students get the opportunity to choose any topic they want. So long
as your project draws upon the lessons of this course, the nature of your project is entirely up to you, albeit subject to the
staff's approval. Students are asked to pick the idea they want and implement with preferred technology in the way that it
solves an actual problem, that you impact campus, or that change the world.

That being said, there are some provisos. You may implement your project in any programming language(s) as long as
the teaching staff approves it. You are welcome to utilize any infrastructure, provided the staff ultimately has access to any
hardware and software that your project requires. Turing Society has some hardware that may be used in some cases.
The final project length should equivalent to at least 1.5 problem set. Final projects should be presented for the course
heads in up to 3 min presentation in virtual or physical format.
Overall implementation of the final project will be taken into account when grading the final project.

Retake

In case the final grade is less than five (not passed), students can be allowed to have one retake. Retake means: retake
midterm and final exam. The evaluation of the problem sets will not be affected by the retake.

Resources

Main: https://cs50.harvard.edu/college/, https://cs50.harvard.edu/x/
Optional:

1) Hacker’s Delight, Second Edition Henry S. Warren Jr. Pearson Education, 2013 ISBN 0-321-84268-5
2) How Computers Work, Tenth Edition Ron White Que Publishing, 2014 ISBN 0-7897-4984-X
3) Programming in C, Fourth Edition Stephen G. Kochan Pearson Education, 2015 ISBN 0-321-77641-0

https://cs50.harvard.edu/college/
https://cs50.harvard.edu/x/

